Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Ther ; 19(4): 1031-1039, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37675733

RESUMO

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse reaction to chemotherapeutics, which seriously affects the outcome of chemotherapy and patients' quality of life. Although it is commonly seen, it lacks effective treatment. Our previous study found that ozone could alleviate neuropathic pain. Damage-associated molecular patterns (DAMPs) or Toll-like receptor 4 (TLR4) or tissue factor (TF)-mediated neuroinflammation and microcirculation disturbance is the main reason for CIPN. Suppressors of cytokine signaling (SOCS) 3 is an endogenous negative feedback regulator of inflammation via TLR4 inhibition. Materials and Methods: Oxaliplatin (L-OHP) was used to establish mice's CIPN model. Nociceptive responses were assessed by observing the ICR mice's incidence of foot regression in mechanical indentation response experiments. Cell signaling assays were performed by Western blotting and immunohistochemistry. The mouse leukemia cells of monocyte-macrophage line RAW 264.7 were cultured to investigate the effects of ozone administration on macrophage. Results: Ozone decreased the expression of TF in the blood and sciatic nerve. It upregulated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-SOCS3 axis to relieve CIPN and inhibit TF expression in vivo. SOCS3 expression was induced by ozone to inhibit the p38/TF signaling in RAW 246.7 cells. Ozone also prevented L-OHP-induced sciatic nerve demyelination. Microglia activation was inhibited, and c-Fos and calcitonin gene-related peptide (CGRP) expression was decreased in the spinal dorsal horn via ozone. Conclusions: In this study, we demonstrated that ozone could alleviate CIPN by upregulating the AMPK-SOCS3 axis to inhibit TF expression, which is a potential treatment for CIPN.


Assuntos
Antineoplásicos , Neuralgia , Camundongos , Animais , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por AMP/genética , Receptor 4 Toll-Like , Qualidade de Vida , Proteínas Supressoras da Sinalização de Citocina
2.
J Neuroinflammation ; 19(1): 25, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093117

RESUMO

BACKGROUND: The development of morphine tolerance is a clinical challenge for managing severe pain. Studies have shown that neuroinflammation is a critical aspect for the development of analgesic tolerance. We found that AMPK-autophagy activation could suppress neuroinflammation and improve morphine tolerance via the upregulation of suppressor of cytokine signaling 3 (SOCS3) by inhibiting the processing and maturation of microRNA-30a-5p. METHODS: CD-1 mice were utilized for the tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of AMPK-autophagy-mediated posttranscriptional regulation of SOCS3. Proinflammatory cytokines were measured by western blotting and real-time PCR. The levels of SOCS3 and miRNA-processing enzymes were evaluated by western blotting, real-time PCR and immunofluorescence staining. RESULTS: Based on experimental verification, miRNA-30a-5p could negatively regulate SOCS3. The AMPK activators AICAR, resveratrol and metformin downregulated miRNA-30a-5p. We found that AMPK activators specifically inhibited the processing and maturation of miRNA-30a-5p in microglia by degrading DICER and AGO2 via autophagy. Furthermore, a miRNA-30a-5p inhibitor significantly improved morphine tolerance via upregulation of SCOS3 in mice. It markedly increased the level of SOCS3 in the spinal cord of mice and subsequently inhibited morphine-induced phosphorylation of NF-κB p65. In addition, a miRNA-30a-5p inhibitor decreased the levels of IL-1ß and TNF-α caused by morphine in microglia. CONCLUSION: AMPK-autophagy activation suppresses neuroinflammation and improves morphine tolerance via the upregulation of SOCS3 by inhibiting miRNA-30a-5p.


Assuntos
MicroRNAs , Morfina , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Humanos , MicroRNAs/metabolismo , Morfina/farmacologia , Doenças Neuroinflamatórias , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...